Monday, November 14, 2011

Addition and subtraction of angles and the double angle formula

Addition of angles formulae:               
cos(a + b) = cosacosb   – sinasinb      
sin(a + b) = cosasinb   + sinacosb          

Subtraction of angles formulae:
cos(ab) = cosacosb   + sinasinb
sin(ab) = sinacosb  - cosasinb

The double angle formulae:
cos(2a) = cos²a - sin²a
sin(2a) = 2cosasina

For the tangents of the new angles, divide sine by cosine.

Consider two angles a and b, with the following sine and cosine values.

sina = 1/3 and cosa = 2sqrt(2)/3

sinb = 2/3 and cosb = sqrt(5)/3

Find the following values as exact numbers.

sin(a + b)
cos(a + b)
tan(a + b)


sin(a - b)
cos(a - b)
tan(a - b)



sin(2a)
cos(2a)
tan(2a)


Answers in the comments.


 

3 comments:

  1. sina = 1/3 and cosa = 2sqrt(2)/3

    sinb = 2/3 and cosb = sqrt(5)/3

    Find the following values as exact numbers.

    sin(a + b) = (sqrt(5) + 4sqrt(2))/9
    cos(a + b) = (2 sqrt(10) - 2)/9
    tan(a + b) = (sqrt(5) + sqrt(2))/2


    sin(a - b) = (sqrt(5) - 4sqrt(2))/9
    cos(a - b) = (2 sqrt(10) + 2)/9
    tan(a - b) = (sqrt(2) - sqrt(5))/2


    sin(2a) = 4sqrt(2)/9
    cos(2a) = 7/9
    tan(2a) = 4sqrt(2)/7

    ReplyDelete
  2. Mr. Hubbard can you give examples using Cos3alpha and Sin3aplpha using the sina= 1/3 and cosa=2sqrt(2/3)??

    ReplyDelete
  3. Hi, Courtney! Sure thing.

    sin(3a) = sin (a + 2a), so use the addition formulas with the numbers

    sin(a) = 1/3
    cos(a) = 2sqrt(2)/3
    sin(2a) = 4sqrt(2)/9
    cos(2a) = 7/9

    cos(3a) = 14sqrt(2)/27 - 4sqrt(2)/27 =
    10sqrt(2)/27

    sin(3a) = 7/27 + 16/27 =
    23/27

    ReplyDelete