Saturday, November 3, 2012

Practice problems for Homework 10


Find the high point and low point surrounding the median point closest to (0, 0) for the following trig functions.

f(x) = 6sinx - 8cosx

g(x) = 2sinx - 4cosx

Here are three points on the unit circle in the complex plane.  Multiplying two points of the form costheta + isintheta and cosiota+isiniota gives us the values for the angle theta + iota.

a = 1/5 + i2sqrt(6)/5
b = 2/5 + isqrt(21)/5

ab =

a² =
a³ =

Answers in the comments. 

1 comment:

  1. f(x) = 6sinx - 8cosx
    6² + 8² = 100, so the amplitude is 10
    when x = arctan(4/3) the function = 0 so arctan(4/3) = .927295... or .2952pi

    f(x) = 10sin(x -.2952pi)

    median (.2952pi, 0)
    high point (.7952pi, 10)
    low point (-.2048pi, -10)


    g(x) = 2sinx - 4cosx
    sqrt(2² + 4²) = sqrt(20) = 2sqrt(5)
    2sinx - 4cosx = 0
    2sinx = 4cosx
    2tanx = 4
    tanx = 2
    arctan(2) = .3524pi

    g(x) = 2sqrt(5)sin(x - .3524pi)
    median (.3524pi, 0)
    high point (.8524pi, 2sqrt(5))
    low point (-.1476pi, -2sqrt(5))

    Here are three points on the unit circle in the complex plane. Multiplying two points of the form costheta + isintheta and cosiota+isiniota gives us the values for the angle theta + iota.

    a = 1/5 + i2sqrt(6)/5
    b = 2/5 + isqrt(21)/5

    ab = 2/25 - 6sqrt(14)/25 + i((sqrt(21)+4sqrt(6))/25

    a² = -23/25 + i4sqrt(6)/25
    a³ = -71/125 - i42sqrt(6)/125

    ReplyDelete